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We give an analysis of the Cahn-Hilliard equation with a general potential, which admits a one-dimensional
kink solution. We investigate the stability of this equilibrium solution to small perpendicular perturbations of
variable wave numberk. We develop a perturbation theory for small and largek and apply the general results
to two commonly used forms for the potential. We go on and use a Pade´ approximant to describe the full
dispersion relation, and for the particular potentials it is shown that the kink solution is stable for allk.
@S1063-651X~96!05812-6#

PACS number~s!: 64.60.2i, 02.90.1p

I. INTRODUCTION

Pattern formation resulting from a phase transition has
been observed in alloys, glasses, polymer solutions, and bi-
nary liquid mixtures. We consider a two-component system
where the phase transition is induced by rapidly decreasing
the temperature~quenching! from someT0.Tc to some
T1,Tc . The continuum limit model, used to describe the
dynamics of the subsequent concentration of one component,
is that proposed by Cahn and Hilliard@1#, namely,

ut5¹2FdFdu2¹2uG , ~1!

where the subscript denotes a partial differentiation with re-
spect tot, while F is some general, nonlinear free energy
expression that admits a stationary, one-dimensional kink so-
lution to the equation above~a kink solution simply being
any solution that describes a flip from one component to
another over some finite distance!. The equation arises from
classical thermodynamic considerations for the interdiffusion
of two componentsA andB. In the above equationu5u1
denotes all componentsA andu5u2 denotes all components
B. For a kink solution we insist that

F~u1!5F~u2!50,
dF

du
~u1!5

dF

du
~u2!50, ~2!

andF(u).0 for u1,u,u2. Equation~1! has a stationary,
one-dimensional kink solutionu0(x) given by the solution of

dF

du
~u0!2

d2u0
dx2

50, ~3!

with limx→1`u05u2 and limx→2`u05u1. Also note that we
can integrate Eq.~3! to obtain

1

2 S du0dx D 25F~u0!1K, ~4!

whereK is the integration constant. In the limitx→1` this
equation becomes

05F~u2!1K5K, ~5!

and so Eq.~4! becomes

S du0dx D 252F~u0!. ~6!

To study perpendicular perturbations to this kink solution we
write

u5u01«du~x!ei ~kyy1kzz!egt. ~7!

Inserting this into Eq.~1!, we obtain the linear equation~hav-
ing neglected products ofdu), namely,

2gdu5S d2dx2
2k2D S d2dx2

2k22
d2F

du2
~u0! D du, ~8!

wherek25ky
21kz

2 .
The plan of the paper is as follows. We use perturbation

theory to determine the stability of the kink solution to
small- and large-k perturbations in Secs. II and III, respec-
tively. This analysis is performed for both a general and
particular free energy. In Sec. IV we use a Pade´ approximant
to derive a full dispersion relation for both the general and
two particular cases. We draw conclusions in Sec. V.

II. SMALL- k ANALYSIS

A. General potential

We look for marginally stable modes (g50), and so from
Eq. ~8! obtain

S d2Fdu2
~u0!2

d2

dx2
1k2D du50. ~9!

Differentiating Eq.~3! with respect tox gives us

d2F

du2
~u0!5

d3u0
dx3 Y du0

dx
, ~10!

and thus Eq.~9! has a solutiondu5du0 /dx, whenk50. We
use this to find the stability of the kink solution for small
k. Begin by expandingdu(x) and g in terms of the small
parameterk,
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g5g1k1g2k
21g3k

31•••,

du5a0
du0
dx

1kdu11k2du21•••, ~11!

wherea0 is a constant coefficient.
The method used relies heavily upon obtaining the correct

form of the solution asx→6`. It is shown in Ref.@2#, for a
different equation, how knowledge of the asymptotic solu-
tion is crucial in provingdu to be bounded. Here we show
by demanding that the full solution to Eq.~8! has the correct
slow spatial varying, asymptotic form, that we can obtain the
value of g to at least orderk4. The asymptotic solution is
discussed in Appendix A, where it is shown that as
x→6`

du→A~k!@12kuxu1O~k2!#, ~12!

We now insert Eqs.~11! into Eq. ~8! and equate orders of
k. To first order ink we obtain the equation

F2
d4

dx4
1

d2

dx2S d
2F

du2
~u0! D Gdu15g1a0

du0
dx

. ~13!

Integrating this twice gives

F d2dx2
2
d2F

du2
~u0!Gdu15c0x1c12g1a0E

0

x

u0~x8!dx8.

~14!

Note that thec0x term will give rise to a contribution to
du1 that is proportional tox asx→6`. Terms proportional
to xn in this limit we call algebraically secular. From Eq.
~12! we find that the solution has an algebraically secular
term uxu, asx→6`. Thus we must setc050 at this and all
subsequent orders ofk. The constantc1 can be determined
using the consistency condition. This is imposed by multi-
plying Eq. ~14! by du0 /dx and integrating over allx. Since
the operatord2/dx22(d2F/du2)(u0) is self adjoint, we find
that

c15
g1a0

~u22u1!
K du0dx E0

x

u0~x8!dx8L , ~15!

where ^ & denotes*2`
1`dx. For convenience we defineI 1

such that

I 15K du0dx E0
x

u0~x8!dx8L , ~16!

giving c15g1a0I 1 /(u22u1) ~see Appendix B!. Now con-
sider Eq.~14! as x→1` and denote the value ofdui as
x→1` by dui ; then

F d2dx2
2b G du15c12g1a0~u2x1K1!, ~17!

where we have written*0
xu0(x8)dx85K11u2x asx→1`,

(d2F/du2)(u2)5b, and we have neglected exponentially
decaying terms. From Eq.~12! we see that to lowest order in
k the asymptotic solution tends to a constant. In this limit,
Eq. ~17! requires the solutiondu1 to have a contribution that

is proportional tou2x1K1. Clearly this is incompatible with
the asymptotic form and so we setg150. This leaves
du15a1(du0 /dx), wherea1 is some constant coefficient.

To second order ink we obtain

F2
d2

dx2
1
d2F

du2
~u0!Gdu25c21g2a0E

0

x

u0~x8!dx82a0
du0
dx

.

~18!

Again using Eq. ~12!, we see that the expression
*0
xu0(x8)dx8 gives the wrong asymptotic form fordu and so
we must setg250. We now apply the consistency condition
to Eq. ~18! to obtain

c25
a0I 2
u22u1

, ~19!

whereI 25^(du0 /dx)
2&. As x→1`, Eq. ~18! becomes

Fb2
d2

dx2G du25c2 , ~20!

which has the solutiondu25(c2 /b) ~we neglect exponen-
tially decaying solutions!.

To third order ink we obtain

F2
d2

dx2
1
d2F

du2
~u0!Gdu35c31g3a0E

0

x

u0~x8!dx82a1
du0
dx

,

~21!

and again we use the consistency condition to determine
c3, namely,

c35
a1I 22g3a0I 1

u22u1
. ~22!

Since in the limitx→1`,du25
c2
b
, we can use Eq.~12! and

require that asx→1`,

du3}11ax, ~23!

wherea is a constant. Knowing this, we do not setg350.
As x→1` Eq. ~21! becomes

F2
d2

dx2
1b Gdu35c31g3a0~K11u2x!, ~24!

which has the algebraic solution

du35
g3a0u2

b
x1

c31g3a0K1

b
, ~25!

where again we have neglected exponentially decaying solu-
tions. We now combine our asymptotic results to obtain

54 6103STABILITY OF THE ONE-DIMENSIONAL KINK . . .



du5
k2c2

b
1
k3~c31g3a0K1!

b
1
k3g3a0u2

b
x1O~k4!

5
k2c2

b S 11
k~c31g3a0K1!

c2
D S 11

kg3a0u2x

c2
D1O~k4!.

~26!

Comparing this with Eq.~A4! of Appendix A, we find

g352
c2
a0u2

52
I 2

u2~u22u1!
. ~27!

Clearly sinceg3 is negative (I 2.0), to orderk3, the kink
solution is stable. Note that this is identical to~2.14! in Ref.
@3#, obtained using the variational method.

The fourth-order equation is

F2
d2

dx2
1
d2F

du2
~u0!Gdu4

5~g3a11g4a01a0!E
0

x

u0~x8!dx822du2

1
c2
b E

0

xE
0

x8d2F

du2
~u0!dx9dx82a2

du0
dx

2c4 , ~28!

wherec4 can be determined using the consistency condition.
As x→1` Eq. ~28! becomes

F2
d2

dx2
1bGdu45~g3a11g4a01a0!~K11u2x!22

c2
b

1
c2
b S bx2

2
1K2x1K3D2c4 , ~29!

where we have written *0
x*0

x8(d2F/du2)(u0)dx9dx8
5bx2/21K2x1K3 in the limit x→1`. Equation~29! has
the algebraic solution

du45b2x
21b1x1b0 , ~30!

where

b05
1

b SK1~g3a11g4a01a0!2
c2
b

2c41
c2K3

b D , ~31!

b15
1

b S u2~g3a11g4a01a0!1
K2c2

b D , ~32!

b25
c2
2b

. ~33!

We now collect the algebraic terms in our asymptotic form
of du to obtain

du5
c2
b
k2S 11k

~c31g3a0K1!

c2
1k2

bb0
c2

D F11k
a0g3u2
c2

x

1k2S bb1x

c2
2
c3a0g3u2x

c2
2 2

a0
2K1g3

2u2x

c2
2 1

bb2x
2

c2
D G

1O~k5!. ~34!

Replacingg3 by 2c2 /a0u2 leaves

d̄u5
c2
b
k2~11••• !F12kx1k2S c3xc2 1

bb1x

c2
2
K1x

u2

1
bb2x

2

c2
D G1O~k5!. ~35!

Using Eq.~A4!, we equate the term above, proportional to
k2x, to 2g3/2b. This gives

g45212
I 1I 2

u2
2~u22u1!

2 1
I 2
2

2bu2
2~u22u1!

2 1
I 2I 3

u2~u22u1!
,

~36!

whereI 35K1 /u22K2 /b. So, finally, we write

g5g3k
31g4k

41O~k5!.

52
I 2

u2~u22u1!
k32S 11

I 1I 2
u2
2~u22u1!

22
I 2
2

2bu2
2~u22u1!

2

2
I 2I 3

u2~u22u1!
D k41O~k5!. ~37!

Note that to determineg to this order ink, we do not need
the full solutiondu2. Determination ofc4 ~which uses the
full solution du2) is not required, and thus we only need the
asymptotic form ofdu2 in our analysis.

B. Particular potential

We now consider the particular case where the free en-
ergy is of the form

F~u!5
1

4
~12u2!2. ~38!

This is a common approximate form for a binary system
undergoing a phase transition, and then the Cahn-Hilliard
equation~1! becomes

ut5¹2@u32u2¹2u#. ~39!

It is simple to see from Eq.~2! thatu1521 andu251. Also
in the limit x→1`

F9~u0!5b52, ~40!

and using Appendix B we perform simple definite integrals
to give

I 152A2~12 ln2!, I 25
2A2
3

, I 35
1

A2
~322ln2!. ~41!
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We find for this potential that the stationary solution has a
growth rate to perpendicular perturbations given by

g52
A2
3
k32

11

18
k41O~k5!. ~42!

To lowest order this agrees with that obtained using a varia-
tional method in Ref.@3#. To next order ink the result ob-
tained in@3# is 8% greater than here. This is due to their use
of the same trial eigenfunction for all orders ofk.

III. LARGE- k ANALYSIS

A. General potential

In this section we consider the growth rate of perpendicu-
lar perturbations with small wavelength. Begin by dividing
the linear equation~8! by k4 to give

2
g

k4
du5S 1k2 d2

dx2
21D 2du2

1

k2 S 1k2 d2

dx2
21D d2Fdu2

~u0!du.

~43!

Since 1/k is small we expand the variables as

g

k4
5ga1

gb

k
1

gc

k2
1•••, ~44!

du5dua1
dub
k

1
duc
k2

1•••. ~45!

The first two orders tell us thatga521 andgb50. To order
1/k2 we obtain

S d2dx2
2
1

2

d2F

du2
~u0! D dua5

gcdua
2

, ~46!

which is an eigenvalue problem forgc . So for largek we
have the following expression for the growth rate:

g

k4
5211

gc

k2
1•••. ~47!

B. Particular potential

For largek we have an expression for the growth rate
given by Eq.~47!. Since the stationary solution to Eq.~39! is
u05tanh(x/A2), gc is obtained by solving

d2

dx2
dua1S 32sech2 x

A2
212

gc

2 D dua50. ~48!

Eigenvalue problems such as this have general solutions
~given on p. 1651 of Ref.@4#!. We find that

gc5S 32A13
2 D .20.303 ~49!

and thus the growth rate of large-k perturbations is given by

g

k4
5212

0.303

k2
1•••. ~50!

To lowest order the kink solution is stable (g52k4), which
is in agreement with Ref.@3#. Figure 1 shows our two ap-
proximations for small and largek given by Eqs.~42! and
~50!, respectively.

IV. FULL DISPERSION RELATION

A. General case

For the particular potential given by Eq.~38!, the only
bounded solution to Eq.~9! with k2>0 is du5du0 /dx

FIG. 1. Particular free energy: dashed line, small-k approximation to the growth rate; full line, large-k approximation to the growth rate.
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(k50), and sog does not cross thek axis for all k.0. We
assume that this applies in general, and so combine growth
rate results for small and largek. This is done using a simple
Padéapproximant to obtain an expression for allk. We as-
sume a general form for the growth rate as

g

k3
5a1S 11a2k1a3k

2

11a4k
D . ~51!

For smallk Eq. ~51! becomes

g

k3
5a1 . ~52!

A comparison of this with Eq.~37! gives usa15g3. To next
order for smallk we have

g

k3
5g3@11~a22a4!k#. ~53!

Again, a comparison with Eq. ~37! gives us
a25g4/g31a4. We now divide Eq.~51! by k and obtain

g

k4
5g3S 1

k2
1
a2
k

1a3

1

k
1a4

D . ~54!

Thus, for largek,

g

k4
5g3

a3
a4
, ~55!

which when compared to Eq.~47! gives usa352a4 /g3. We
go to next order in 1/k and finda45a3 /a2, so that our final
Padéapproximant for the growth rate is

2
g

k3
5

g3
2

~11g4!k2g3
1k. ~56!

B. Particular cases

We now consider the case~a!, where the free energy is
given by Eq. ~38!. It is found that g352A2/3 and

g452 11
18 , and thus the growth rate given by Eq.~56! be-

comes

2
g

k3
5

4

6A217k
1k. ~57!

This is plotted, along with approximations for small and
largek, in Fig. 2. This appears to be in good agreement with
Fig. 6 of Ref.@3#.

We can calculate another Pade´ approximation for the
growth rate in this particular case. Here, instead of using the
fourth-order result for smallk, we use the (1/k2)-order result
for largek given in Eq.~50!. This gives

2
g

k3
5

4

6A21
8k

A1323

1k, ~58!

which is at most 8.5% different from Eq.~57!.
We now look at a particular case~b! where the free en-

ergy is given by

FIG. 2. Particular free energy~a!: dashed line, small-k approximation to the growth rate; dot dashed line, large-k approximation to the
growth rate; full line, Pade´ approximation to the growth rate.
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F~u!5H 1

2
~12u!2, u.0

1

2
~11u!2, u,0,

~59!

which is the so-called double Gaussian potential. It is a com-
monly used approximation because an exact growth rate re-
lation for the linear equation~8! can be obtained@see Eq.
~2.16! of @5##. Using this potential we findd2F/du251 for
all x, u251, u1521, and using Appendix B we calculate
the values of the definite integrals, namely,

I 15I 25I 351. ~60!

This givesg352 1
2 andg452 5

8 , which are substituted into
Eq. ~56! to give a Pade´ approximant form for the growth rate
as

2
g

k3
5

2

413k
1k. ~61!

When compared to the exact growth rate relation, given by
Eq. ~2.16! of Ref. @5#, this approximation has a maximum
error of 1.3%, as shown in Fig. 3.

V. CONCLUSIONS

We have found expressions for the growth rate of perpen-
dicular perturbations to the kink solution of a general Cahn-
Hilliard equation, at small and large values of the wave num-
ber k. This is done using ordinary perturbation analysis
combined with knowledge of the asymptotic form of the lin-
ear equation. We derive a Pade´ approximant to the growth
rate for allk. We apply our results to the Cahn-Hilliard equa-
tion for two particular potentials. In both cases, it is found
that the kink solution is stable for allk, with large wave

numbers decaying quickest, andk50 ~infinite wavelength
perturbations! being marginally stable (g50). For the case
of the double Gaussian potential, our approximation is within
1.3% of the exact result. This leads us to believe that Eq.
~56! is a good approximation to the growth rate of perturba-
tions for all wavelengths, forany potential admitting a sta-
tionary kink solution.

APPENDIX A: ASYMPTOTIC BEHAVIOR OF SOLUTIONS
TO THE LINEAR CAHN-HILLIARD EQUATION

As x→1`, the linear equation~8! can be written as

F S d2dx2
2k2D 22bS d2dx2

2k2D1gGdu50, ~A1!

where terms such ase2Abx have been neglected. This has
solutions of the formdu}elx . Combining this with Eq.~A1!
gives

l52S b6bA12
4g

b2

2
1k2D 1/2

. ~A2!

Since we are only interested in the slow behavior~the alge-
braic terms discussed in Sec. II!, we need only consider

l52S b2bA12
4g

b2

2
1k2D 1/2

. ~A3!

If g5g3k
31g4k

41••• andk is small, then we can expand
our solutionelx to obtain

du5AF12kx1k2S x22 2
g3x

2b D1O~k3!G , ~A4!

FIG. 3. Particular free energy~b!: percentage error in growth rate given by the Pade´ approximant.
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whereA is a function ofk. Note how this expansion contains
algebraically secular terms that appear to be unbounded as
x→1`, but are in fact simply parts of a slowly decaying
exponential term. Also we have not includedg1 or g2 in our
expansion ofg. Including such terms makes equating asymp-
totic results here to those obtained using perturbative tech-
niques impossible.

APPENDIX B: UNKNOWN INTEGRALS

We have determined the growth rate of small-k perturba-
tions to fourth order ink. The exact values are dependent
upon three unknown integralsI 1,I 2 ,I 3. Here we redefine
them from integrals over allx to integrals over allu0.

From the definition given by Eq.~16!,

I 15K du0dx E0
x

u0~x8!dx8L [E
2`

1`du0
dx E0

x

u0~x8!dx8dx ,

~B1!

which on integrating by parts becomes

I 15Fu0E
0

x

u0~x8!dx8G
2`

1`

2E
2`

1`

u0
2dx

5u2E
0

1`

u0~x!dx2u1E
0

2`

u0~x!dx2E
2`

1`

u0
2~x!dx,

~B2!

and using Eq.~6! leaves

I 15u2E
0

u2 u0

A2F~u0!
du02u1E

0

u1 u0

A2F~u0!
du0

2E
u1

u2 u0
2

A2F~u0!
du0 . ~B3!

Similarly,

I 25 K S du0dx D 2L 5E
2`

1`S du0dx D 2dx
5E

u1

u2du0
dx

du05E
u1

u2A2F~u0!du0 ~B4!

and

I 35
K1

u2
2
K2

b
5 lim

x→1`
E
0

xFu0u2 2
1

b

d2F

du2
~u0!Gdx

5
1

u2b
E
0

u2Fbu02u2
d2F

du2
~u0!Gdu0u0x

5
1

A2u2b
E
0

u2@bu02u2F9~u0!#

AF~u0!
du0 . ~B5!
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