Stability of the one-dimensional kink solution to a general Cahn-Hilliard equation

David Bettinson and George Rowlands
Department of Physics, University of Warwick, Coventry, CV4 7AL, England
(Received 3 July 1996)

Abstract

We give an analysis of the Cahn-Hilliard equation with a general potential, which admits a one-dimensional kink solution. We investigate the stability of this equilibrium solution to small perpendicular perturbations of variable wave number k. We develop a perturbation theory for small and large k and apply the general results to two commonly used forms for the potential. We go on and use a Padé approximant to describe the full dispersion relation, and for the particular potentials it is shown that the kink solution is stable for all k. [S1063-651X(96)05812-6]

PACS number(s): 64.60. $-\mathrm{i}, 02.90 .+\mathrm{p}$

I. INTRODUCTION

Pattern formation resulting from a phase transition has been observed in alloys, glasses, polymer solutions, and binary liquid mixtures. We consider a two-component system where the phase transition is induced by rapidly decreasing the temperature (quenching) from some $T_{0}>T_{c}$ to some $T_{1}<T_{c}$. The continuum limit model, used to describe the dynamics of the subsequent concentration of one component, is that proposed by Cahn and Hilliard [1], namely,

$$
\begin{equation*}
u_{t}=\nabla^{2}\left[\frac{d F}{d u}-\nabla^{2} u\right], \tag{1}
\end{equation*}
$$

where the subscript denotes a partial differentiation with respect to t, while F is some general, nonlinear free energy expression that admits a stationary, one-dimensional kink solution to the equation above (a kink solution simply being any solution that describes a flip from one component to another over some finite distance). The equation arises from classical thermodynamic considerations for the interdiffusion of two components A and B. In the above equation $u=u_{1}$ denotes all components A and $u=u_{2}$ denotes all components B. For a kink solution we insist that

$$
\begin{equation*}
F\left(u_{1}\right)=F\left(u_{2}\right)=0, \quad \frac{d F}{d u}\left(u_{1}\right)=\frac{d F}{d u}\left(u_{2}\right)=0, \tag{2}
\end{equation*}
$$

and $F(u)>0$ for $u_{1}<u<u_{2}$. Equation (1) has a stationary, one-dimensional kink solution $u_{0}(x)$ given by the solution of

$$
\begin{equation*}
\frac{d F}{d u}\left(u_{0}\right)-\frac{d^{2} u_{0}}{d x^{2}}=0 \tag{3}
\end{equation*}
$$

with $\lim _{x \rightarrow+\infty} u_{0}=u_{2}$ and $\lim _{x \rightarrow-\infty} u_{0}=u_{1}$. Also note that we can integrate Eq. (3) to obtain

$$
\begin{equation*}
\frac{1}{2}\left(\frac{d u_{0}}{d x}\right)^{2}=F\left(u_{0}\right)+K \tag{4}
\end{equation*}
$$

where K is the integration constant. In the limit $x \rightarrow+\infty$ this equation becomes

$$
\begin{equation*}
0=F\left(u_{2}\right)+K=K, \tag{5}
\end{equation*}
$$

and so Eq. (4) becomes

$$
\begin{equation*}
\left(\frac{d u_{0}}{d x}\right)^{2}=2 F\left(u_{0}\right) . \tag{6}
\end{equation*}
$$

To study perpendicular perturbations to this kink solution we write

$$
\begin{equation*}
u=u_{0}+\varepsilon \delta u(x) e^{i\left(k_{y} y+k_{z} z\right)} e^{\gamma t} \tag{7}
\end{equation*}
$$

Inserting this into Eq. (1), we obtain the linear equation (having neglected products of δu), namely,

$$
\begin{equation*}
-\gamma \delta u=\left(\frac{d^{2}}{d x^{2}}-k^{2}\right)\left(\frac{d^{2}}{d x^{2}}-k^{2}-\frac{d^{2} F}{d u^{2}}\left(u_{0}\right)\right) \delta u \tag{8}
\end{equation*}
$$

where $k^{2}=k_{y}^{2}+k_{z}^{2}$.
The plan of the paper is as follows. We use perturbation theory to determine the stability of the kink solution to small- and large- k perturbations in Secs. II and III, respectively. This analysis is performed for both a general and particular free energy. In Sec. IV we use a Padé approximant to derive a full dispersion relation for both the general and two particular cases. We draw conclusions in Sec. V.

II. SMALL-k ANALYSIS

A. General potential

We look for marginally stable modes $(\gamma=0)$, and so from Eq. (8) obtain

$$
\begin{equation*}
\left(\frac{d^{2} F}{d u^{2}}\left(u_{0}\right)-\frac{d^{2}}{d x^{2}}+k^{2}\right) \delta u=0 . \tag{9}
\end{equation*}
$$

Differentiating Eq. (3) with respect to x gives us

$$
\begin{equation*}
\frac{d^{2} F}{d u^{2}}\left(u_{0}\right)=\frac{d^{3} u_{0}}{d x^{3}} / \frac{d u_{0}}{d x} \tag{10}
\end{equation*}
$$

and thus Eq. (9) has a solution $\delta u=d u_{0} / d x$, when $k=0$. We use this to find the stability of the kink solution for small k. Begin by expanding $\delta u(x)$ and γ in terms of the small parameter k,

$$
\begin{gather*}
\gamma=\gamma_{1} k+\gamma_{2} k^{2}+\gamma_{3} k^{3}+\cdots, \\
\delta u=a_{0} \frac{d u_{0}}{d x}+k \delta u_{1}+k^{2} \delta u_{2}+\cdots, \tag{11}
\end{gather*}
$$

where a_{0} is a constant coefficient.
The method used relies heavily upon obtaining the correct form of the solution as $x \rightarrow \pm \infty$. It is shown in Ref. [2], for a different equation, how knowledge of the asymptotic solution is crucial in proving δu to be bounded. Here we show by demanding that the full solution to Eq. (8) has the correct slow spatial varying, asymptotic form, that we can obtain the value of γ to at least order k^{4}. The asymptotic solution is discussed in Appendix A, where it is shown that as $x \rightarrow \pm \infty$

$$
\begin{equation*}
\delta u \rightarrow A(k)\left[1-k|x|+O\left(k^{2}\right)\right], \tag{12}
\end{equation*}
$$

We now insert Eqs. (11) into Eq. (8) and equate orders of k. To first order in k we obtain the equation

$$
\begin{equation*}
\left[-\frac{d^{4}}{d x^{4}}+\frac{d^{2}}{d x^{2}}\left(\frac{d^{2} F}{d u^{2}}\left(u_{0}\right)\right)\right] \delta u_{1}=\gamma_{1} a_{0} \frac{d u_{0}}{d x} . \tag{13}
\end{equation*}
$$

Integrating this twice gives

$$
\begin{equation*}
\left[\frac{d^{2}}{d x^{2}}-\frac{d^{2} F}{d u^{2}}\left(u_{0}\right)\right] \delta u_{1}=c_{0} x+c_{1}-\gamma_{1} a_{0} \int_{0}^{x} u_{0}\left(x^{\prime}\right) d x^{\prime} \tag{14}
\end{equation*}
$$

Note that the $c_{0} x$ term will give rise to a contribution to δu_{1} that is proportional to x as $x \rightarrow \pm \infty$. Terms proportional to x^{n} in this limit we call algebraically secular. From Eq. (12) we find that the solution has an algebraically secular term $|x|$, as $x \rightarrow \pm \infty$. Thus we must set $c_{0}=0$ at this and all subsequent orders of k. The constant c_{1} can be determined using the consistency condition. This is imposed by multiplying Eq. (14) by $d u_{0} / d x$ and integrating over all x. Since the operator $d^{2} / d x^{2}-\left(d^{2} F / d u^{2}\right)\left(u_{0}\right)$ is self adjoint, we find that

$$
\begin{equation*}
c_{1}=\frac{\gamma_{1} a_{0}}{\left(u_{2}-u_{1}\right)}\left\langle\frac{d u_{0}}{d x} \int_{0}^{x} u_{0}\left(x^{\prime}\right) d x^{\prime}\right\rangle, \tag{15}
\end{equation*}
$$

where $\left\rangle\right.$ denotes $\int_{-\infty}^{+\infty} d x$. For convenience we define I_{1} such that

$$
\begin{equation*}
I_{1}=\left\langle\frac{d u_{0}}{d x} \int_{0}^{x} u_{0}\left(x^{\prime}\right) d x^{\prime}\right\rangle \tag{16}
\end{equation*}
$$

giving $c_{1}=\gamma_{1} a_{0} I_{1} /\left(u_{2}-u_{1}\right)$ (see Appendix B). Now consider Eq. (14) as $x \rightarrow+\infty$ and denote the value of δu_{i} as $x \rightarrow+\infty$ by $\overline{\delta u}_{i}$; then

$$
\begin{equation*}
\left[\frac{d^{2}}{d x^{2}}-\beta\right] \overline{\delta u}_{1}=c_{1}-\gamma_{1} a_{0}\left(u_{2} x+K_{1}\right) \tag{17}
\end{equation*}
$$

where we have written $\int_{0}^{x} u_{0}\left(x^{\prime}\right) d x^{\prime}=K_{1}+u_{2} x$ as $x \rightarrow+\infty$, $\left(d^{2} F / d u^{2}\right)\left(u_{2}\right)=\beta$, and we have neglected exponentially decaying terms. From Eq. (12) we see that to lowest order in k the asymptotic solution tends to a constant. In this limit, Eq. (17) requires the solution $\overline{\delta u}_{1}$ to have a contribution that
is proportional to $u_{2} x+K_{1}$. Clearly this is incompatible with the asymptotic form and so we set $\gamma_{1}=0$. This leaves $\delta u_{1}=a_{1}\left(d u_{0} / d x\right)$, where a_{1} is some constant coefficient.

To second order in k we obtain
$\left[-\frac{d^{2}}{d x^{2}}+\frac{d^{2} F}{d u^{2}}\left(u_{0}\right)\right] \delta u_{2}=c_{2}+\gamma_{2} a_{0} \int_{0}^{x} u_{0}\left(x^{\prime}\right) d x^{\prime}-a_{0} \frac{d u_{0}}{d x}$.

Again using Eq. (12), we see that the expression $\int_{0}^{x} u_{0}\left(x^{\prime}\right) d x^{\prime}$ gives the wrong asymptotic form for δu and so we must set $\gamma_{2}=0$. We now apply the consistency condition to Eq. (18) to obtain

$$
\begin{equation*}
c_{2}=\frac{a_{0} I_{2}}{u_{2}-u_{1}} \tag{19}
\end{equation*}
$$

where $I_{2}=\left\langle\left(d u_{0} / d x\right)^{2}\right\rangle$. As $x \rightarrow+\infty$, Eq. (18) becomes

$$
\begin{equation*}
\left[\beta-\frac{d^{2}}{d x^{2}}\right] \overline{\delta u}_{2}=c_{2} \tag{20}
\end{equation*}
$$

which has the solution $\overline{\delta u}_{2}=\left(c_{2} / \beta\right)$ (we neglect exponentially decaying solutions).

To third order in k we obtain

$$
\begin{equation*}
\left[-\frac{d^{2}}{d x^{2}}+\frac{d^{2} F}{d u^{2}}\left(u_{0}\right)\right] \delta u_{3}=c_{3}+\gamma_{3} a_{0} \int_{0}^{x} u_{0}\left(x^{\prime}\right) d x^{\prime}-a_{1} \frac{d u_{0}}{d x} \tag{21}
\end{equation*}
$$

and again we use the consistency condition to determine c_{3}, namely,

$$
\begin{equation*}
c_{3}=\frac{a_{1} I_{2}-\gamma_{3} a_{0} I_{1}}{u_{2}-u_{1}} \tag{22}
\end{equation*}
$$

Since in the limit $x \rightarrow+\infty, \overline{\delta u}_{2}=\frac{c_{2}}{\beta}$, we can use Eq. (12) and require that as $x \rightarrow+\infty$,

$$
\begin{equation*}
\overline{\delta u}_{3} \propto 1+\alpha x, \tag{23}
\end{equation*}
$$

where α is a constant. Knowing this, we do not set $\gamma_{3}=0$. As $x \rightarrow+\infty$ Eq. (21) becomes

$$
\begin{equation*}
\left[-\frac{d^{2}}{d x^{2}}+\beta\right] \overline{\delta u}_{3}=c_{3}+\gamma_{3} a_{0}\left(K_{1}+u_{2} x\right) \tag{24}
\end{equation*}
$$

which has the algebraic solution

$$
\begin{equation*}
\overline{\delta u}_{3}=\frac{\gamma_{3} a_{0} u_{2}}{\beta} x+\frac{c_{3}+\gamma_{3} a_{0} K_{1}}{\beta} \tag{25}
\end{equation*}
$$

where again we have neglected exponentially decaying solutions. We now combine our asymptotic results to obtain

$$
\begin{align*}
\overline{\delta u} & =\frac{k^{2} c_{2}}{\beta}+\frac{k^{3}\left(c_{3}+\gamma_{3} a_{0} K_{1}\right)}{\beta}+\frac{k^{3} \gamma_{3} a_{0} u_{2}}{\beta} x+O\left(k^{4}\right) \\
& =\frac{k^{2} c_{2}}{\beta}\left(1+\frac{k\left(c_{3}+\gamma_{3} a_{0} K_{1}\right)}{c_{2}}\right)\left(1+\frac{k \gamma_{3} a_{0} u_{2} x}{c_{2}}\right)+O\left(k^{4}\right) \tag{26}
\end{align*}
$$

Comparing this with Eq. (A4) of Appendix A, we find

$$
\begin{equation*}
\gamma_{3}=-\frac{c_{2}}{a_{0} u_{2}}=-\frac{I_{2}}{u_{2}\left(u_{2}-u_{1}\right)} . \tag{27}
\end{equation*}
$$

Clearly since γ_{3} is negative $\left(I_{2}>0\right)$, to order k^{3}, the kink solution is stable. Note that this is identical to (2.14) in Ref. [3], obtained using the variational method.

The fourth-order equation is

$$
\begin{align*}
{\left[-\frac{d^{2}}{d x^{2}}+\right.} & \left.\frac{d^{2} F}{d u^{2}}\left(u_{0}\right)\right] \delta u_{4} \\
= & \left(\gamma_{3} a_{1}+\gamma_{4} a_{0}+a_{0}\right) \int_{0}^{x} u_{0}\left(x^{\prime}\right) d x^{\prime}-2 \delta u_{2} \\
& +\frac{c_{2}}{\beta} \int_{0}^{x} \int_{0}^{x^{\prime}} \frac{d^{2} F}{d u^{2}}\left(u_{0}\right) d x^{\prime \prime} d x^{\prime}-a_{2} \frac{d u_{0}}{d x}-c_{4} \tag{28}
\end{align*}
$$

where c_{4} can be determined using the consistency condition. As $x \rightarrow+\infty$ Eq. (28) becomes

$$
\begin{align*}
{\left[-\frac{d^{2}}{d x^{2}}+\beta\right] \overline{\delta u_{4}}=} & \left(\gamma_{3} a_{1}+\gamma_{4} a_{0}+a_{0}\right)\left(K_{1}+u_{2} x\right)-2 \frac{c_{2}}{\beta} \\
& +\frac{c_{2}}{\beta}\left(\frac{\beta x^{2}}{2}+K_{2} x+K_{3}\right)-c_{4} \tag{29}
\end{align*}
$$

where we have written $\int_{0}^{x} \int_{0}^{x^{\prime}}\left(d^{2} F / d u^{2}\right)\left(u_{0}\right) d x^{\prime \prime} d x^{\prime}$ $=\beta x^{2} / 2+K_{2} x+K_{3}$ in the limit $x \rightarrow+\infty$. Equation (29) has the algebraic solution

$$
\begin{equation*}
\overline{\delta u}_{4}=b_{2} x^{2}+b_{1} x+b_{0} \tag{30}
\end{equation*}
$$

where

$$
\begin{gather*}
b_{0}=\frac{1}{\beta}\left(K_{1}\left(\gamma_{3} a_{1}+\gamma_{4} a_{0}+a_{0}\right)-\frac{c_{2}}{\beta}-c_{4}+\frac{c_{2} K_{3}}{\beta}\right), \tag{31}\\
b_{1}=\frac{1}{\beta}\left(u_{2}\left(\gamma_{3} a_{1}+\gamma_{4} a_{0}+a_{0}\right)+\frac{K_{2} c_{2}}{\beta}\right) \tag{32}\\
b_{2}=\frac{c_{2}}{2 \beta} \tag{33}
\end{gather*}
$$

We now collect the algebraic terms in our asymptotic form of δu to obtain

$$
\begin{align*}
\overline{\delta u}= & \frac{c_{2}}{\beta} k^{2}\left(1+k \frac{\left(c_{3}+\gamma_{3} a_{0} K_{1}\right)}{c_{2}}+k^{2} \frac{\beta b_{0}}{c_{2}}\right)\left[1+k \frac{a_{0} \gamma_{3} u_{2}}{c_{2}} x\right. \\
& \left.+k^{2}\left(\frac{\beta b_{1} x}{c_{2}}-\frac{c_{3} a_{0} \gamma_{3} u_{2} x}{c_{2}^{2}}-\frac{a_{0}^{2} K_{1} \gamma_{3}^{2} u_{2} x}{c_{2}^{2}}+\frac{\beta b_{2} x^{2}}{c_{2}}\right)\right] \\
& +O\left(k^{5}\right) . \tag{34}
\end{align*}
$$

Replacing γ_{3} by $-c_{2} / a_{0} u_{2}$ leaves

$$
\begin{align*}
\bar{\delta} u= & \frac{c_{2}}{\beta} k^{2}(1+\cdots)\left[1-k x+k^{2}\left(\frac{c_{3} x}{c_{2}}+\frac{\beta b_{1} x}{c_{2}}-\frac{K_{1} x}{u_{2}}\right.\right. \\
& \left.\left.+\frac{\beta b_{2} x^{2}}{c_{2}}\right)\right]+O\left(k^{5}\right) \tag{35}
\end{align*}
$$

Using Eq. (A4), we equate the term above, proportional to $k^{2} x$, to $-\gamma_{3} / 2 \beta$. This gives

$$
\begin{equation*}
\gamma_{4}=-1-\frac{I_{1} I_{2}}{u_{2}^{2}\left(u_{2}-u_{1}\right)^{2}}+\frac{I_{2}^{2}}{2 \beta u_{2}^{2}\left(u_{2}-u_{1}\right)^{2}}+\frac{I_{2} I_{3}}{u_{2}\left(u_{2}-u_{1}\right)}, \tag{36}
\end{equation*}
$$

where $I_{3}=K_{1} / u_{2}-K_{2} / \beta$. So, finally, we write
$\gamma=\gamma_{3} k^{3}+\gamma_{4} k^{4}+O\left(k^{5}\right)$.

$$
\begin{align*}
= & -\frac{I_{2}}{u_{2}\left(u_{2}-u_{1}\right)} k^{3}-\left(1+\frac{I_{1} I_{2}}{u_{2}^{2}\left(u_{2}-u_{1}\right)^{2}}-\frac{I_{2}^{2}}{2 \beta u_{2}^{2}\left(u_{2}-u_{1}\right)^{2}}\right. \\
& \left.-\frac{I_{2} I_{3}}{u_{2}\left(u_{2}-u_{1}\right)}\right) k^{4}+O\left(k^{5}\right) . \tag{37}
\end{align*}
$$

Note that to determine γ to this order in k, we do not need the full solution δu_{2}. Determination of c_{4} (which uses the full solution δu_{2}) is not required, and thus we only need the asymptotic form of δu_{2} in our analysis.

B. Particular potential

We now consider the particular case where the free energy is of the form

$$
\begin{equation*}
F(u)=\frac{1}{4}\left(1-u^{2}\right)^{2} \tag{38}
\end{equation*}
$$

This is a common approximate form for a binary system undergoing a phase transition, and then the Cahn-Hilliard equation (1) becomes

$$
\begin{equation*}
u_{t}=\nabla^{2}\left[u^{3}-u-\nabla^{2} u\right] . \tag{39}
\end{equation*}
$$

It is simple to see from Eq. (2) that $u_{1}=-1$ and $u_{2}=1$. Also in the limit $x \rightarrow+\infty$

$$
\begin{equation*}
F^{\prime \prime}\left(u_{0}\right)=\beta=2, \tag{40}
\end{equation*}
$$

and using Appendix B we perform simple definite integrals to give
$I_{1}=2 \sqrt{2}(1-\ln 2), \quad I_{2}=\frac{2 \sqrt{2}}{3}, \quad I_{3}=\frac{1}{\sqrt{2}}(3-2 \ln 2)$.

FIG. 1. Particular free energy: dashed line, small- k approximation to the growth rate; full line, large- k approximation to the growth rate.

We find for this potential that the stationary solution has a growth rate to perpendicular perturbations given by

$$
\begin{equation*}
\gamma=-\frac{\sqrt{2}}{3} k^{3}-\frac{11}{18} k^{4}+O\left(k^{5}\right) . \tag{42}
\end{equation*}
$$

To lowest order this agrees with that obtained using a variational method in Ref. [3]. To next order in k the result obtained in [3] is 8% greater than here. This is due to their use of the same trial eigenfunction for all orders of k.

III. LARGE- k ANALYSIS

A. General potential

In this section we consider the growth rate of perpendicular perturbations with small wavelength. Begin by dividing the linear equation (8) by k^{4} to give

$$
\begin{equation*}
-\frac{\gamma}{k^{4}} \delta u=\left(\frac{1}{k^{2}} \frac{d^{2}}{d x^{2}}-1\right)^{2} \delta u-\frac{1}{k^{2}}\left(\frac{1}{k^{2}} \frac{d^{2}}{d x^{2}}-1\right) \frac{d^{2} F}{d u^{2}}\left(u_{0}\right) \delta u . \tag{43}
\end{equation*}
$$

Since $1 / k$ is small we expand the variables as

$$
\begin{gather*}
\frac{\gamma}{k^{4}}=\gamma_{a}+\frac{\gamma_{b}}{k}+\frac{\gamma_{c}}{k^{2}}+\cdots, \tag{44}\\
\delta u=\delta u_{a}+\frac{\delta u_{b}}{k}+\frac{\delta u_{c}}{k^{2}}+\cdots . \tag{45}
\end{gather*}
$$

The first two orders tell us that $\gamma_{a}=-1$ and $\gamma_{b}=0$. To order $1 / k^{2}$ we obtain

$$
\begin{equation*}
\left(\frac{d^{2}}{d x^{2}}-\frac{1}{2} \frac{d^{2} F}{d u^{2}}\left(u_{0}\right)\right) \delta u_{a}=\frac{\gamma_{c} \delta u_{a}}{2}, \tag{46}
\end{equation*}
$$

which is an eigenvalue problem for γ_{c}. So for large k we have the following expression for the growth rate:

$$
\begin{equation*}
\frac{\gamma}{k^{4}}=-1+\frac{\gamma_{c}}{k^{2}}+\cdots \tag{47}
\end{equation*}
$$

B. Particular potential

For large k we have an expression for the growth rate given by Eq. (47). Since the stationary solution to Eq. (39) is $u_{0}=\tanh (x / \sqrt{2}), \gamma_{c}$ is obtained by solving

$$
\begin{equation*}
\frac{d^{2}}{d x^{2}} \delta u_{a}+\left(\frac{3}{2} \operatorname{sech}^{2} \frac{x}{\sqrt{2}}-1-\frac{\gamma_{c}}{2}\right) \delta u_{a}=0 \tag{48}
\end{equation*}
$$

Eigenvalue problems such as this have general solutions (given on p. 1651 of Ref. [4]). We find that

$$
\begin{equation*}
\gamma_{c}=\left(\frac{3-\sqrt{13}}{2}\right) \simeq-0.303 \tag{49}
\end{equation*}
$$

and thus the growth rate of large- k perturbations is given by

$$
\begin{equation*}
\frac{\gamma}{k^{4}}=-1-\frac{0.303}{k^{2}}+\cdots \tag{50}
\end{equation*}
$$

To lowest order the kink solution is stable $\left(\gamma=-k^{4}\right)$, which is in agreement with Ref. [3]. Figure 1 shows our two approximations for small and large k given by Eqs. (42) and (50), respectively.

IV. FULL DISPERSION RELATION

A. General case

For the particular potential given by Eq. (38), the only bounded solution to Eq. (9) with $k^{2} \geqslant 0$ is $\delta u=d u_{0} / d x$

FIG. 2. Particular free energy (a): dashed line, small-k approximation to the growth rate; dot dashed line, large-k approximation to the growth rate; full line, Padé approximation to the growth rate.
($k=0$), and so γ does not cross the k axis for all $k>0$. We assume that this applies in general, and so combine growth rate results for small and large k. This is done using a simple Padé approximant to obtain an expression for all k. We assume a general form for the growth rate as

$$
\begin{equation*}
\frac{\gamma}{k^{3}}=a_{1}\left(\frac{1+a_{2} k+a_{3} k^{2}}{1+a_{4} k}\right) \tag{51}
\end{equation*}
$$

For small k Eq. (51) becomes

$$
\begin{equation*}
\frac{\gamma}{k^{3}}=a_{1} \tag{52}
\end{equation*}
$$

A comparison of this with Eq. (37) gives us $a_{1}=\gamma_{3}$. To next order for small k we have

$$
\begin{equation*}
\frac{\gamma}{k^{3}}=\gamma_{3}\left[1+\left(a_{2}-a_{4}\right) k\right] . \tag{53}
\end{equation*}
$$

Again, a comparison with Eq. (37) gives us $a_{2}=\gamma_{4} / \gamma_{3}+a_{4}$. We now divide Eq. (51) by k and obtain

$$
\begin{equation*}
\frac{\gamma}{k^{4}}=\gamma_{3}\left(\frac{\frac{1}{k^{2}}+\frac{a_{2}}{k}+a_{3}}{\frac{1}{k}+a_{4}}\right) . \tag{54}
\end{equation*}
$$

Thus, for large k,

$$
\begin{equation*}
\frac{\gamma}{k^{4}}=\gamma_{3} \frac{a_{3}}{a_{4}} \tag{55}
\end{equation*}
$$

which when compared to Eq. (47) gives us $a_{3}=-a_{4} / \gamma_{3}$. We go to next order in $1 / k$ and find $a_{4}=a_{3} / a_{2}$, so that our final Pade approximant for the growth rate is

$$
\begin{equation*}
-\frac{\gamma}{k^{3}}=\frac{\gamma_{3}^{2}}{\left(1+\gamma_{4}\right) k-\gamma_{3}}+k \tag{56}
\end{equation*}
$$

B. Particular cases

We now consider the case (a), where the free energy is given by Eq. (38). It is found that $\gamma_{3}=-\sqrt{2} / 3$ and $\gamma_{4}=-\frac{11}{18}$, and thus the growth rate given by Eq. (56) becomes

$$
\begin{equation*}
-\frac{\gamma}{k^{3}}=\frac{4}{6 \sqrt{2}+7 k}+k \tag{57}
\end{equation*}
$$

This is plotted, along with approximations for small and large k, in Fig. 2. This appears to be in good agreement with Fig. 6 of Ref. [3].

We can calculate another Padé approximation for the growth rate in this particular case. Here, instead of using the fourth-order result for small k, we use the $\left(1 / k^{2}\right)$-order result for large k given in Eq. (50). This gives

$$
\begin{equation*}
-\frac{\gamma}{k^{3}}=\frac{4}{6 \sqrt{2}+\frac{8 k}{\sqrt{13}-3}}+k \tag{58}
\end{equation*}
$$

which is at most 8.5% different from Eq. (57).
We now look at a particular case (b) where the free energy is given by

FIG. 3. Particular free energy (b): percentage error in growth rate given by the Padé approximant.

$$
F(u)= \begin{cases}\frac{1}{2}(1-u)^{2}, & u>0 \tag{59}\\ \frac{1}{2}(1+u)^{2}, & u<0\end{cases}
$$

which is the so-called double Gaussian potential. It is a commonly used approximation because an exact growth rate relation for the linear equation (8) can be obtained [see Eq. (2.16) of [5]]. Using this potential we find $d^{2} F / d u^{2}=1$ for all $x, u_{2}=1, u_{1}=-1$, and using Appendix B we calculate the values of the definite integrals, namely,

$$
\begin{equation*}
I_{1}=I_{2}=I_{3}=1 \tag{60}
\end{equation*}
$$

This gives $\gamma_{3}=-\frac{1}{2}$ and $\gamma_{4}=-\frac{5}{8}$, which are substituted into Eq. (56) to give a Padé approximant form for the growth rate as

$$
\begin{equation*}
-\frac{\gamma}{k^{3}}=\frac{2}{4+3 k}+k \tag{61}
\end{equation*}
$$

When compared to the exact growth rate relation, given by Eq. (2.16) of Ref. [5], this approximation has a maximum error of 1.3%, as shown in Fig. 3.

V. CONCLUSIONS

We have found expressions for the growth rate of perpendicular perturbations to the kink solution of a general CahnHilliard equation, at small and large values of the wave number k. This is done using ordinary perturbation analysis combined with knowledge of the asymptotic form of the linear equation. We derive a Padé approximant to the growth rate for all k. We apply our results to the Cahn-Hilliard equation for two particular potentials. In both cases, it is found that the kink solution is stable for all k, with large wave
numbers decaying quickest, and $k=0$ (infinite wavelength perturbations) being marginally stable $(\gamma=0)$. For the case of the double Gaussian potential, our approximation is within 1.3% of the exact result. This leads us to believe that Eq. (56) is a good approximation to the growth rate of perturbations for all wavelengths, for any potential admitting a stationary kink solution.

APPENDIX A: ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO THE LINEAR CAHN-HILLIARD EQUATION

As $x \rightarrow+\infty$, the linear equation (8) can be written as

$$
\begin{equation*}
\left[\left(\frac{d^{2}}{d x^{2}}-k^{2}\right)^{2}-\beta\left(\frac{d^{2}}{d x^{2}}-k^{2}\right)+\gamma\right] \delta u=0 \tag{A1}
\end{equation*}
$$

where terms such as $e^{-\sqrt{\beta} x}$ have been neglected. This has solutions of the form $\delta u \propto e^{\lambda x}$. Combining this with Eq. (A1) gives

$$
\begin{equation*}
\lambda=-\left(\frac{\beta \pm \beta \sqrt{1-\frac{4 \gamma}{\beta^{2}}}}{2}+k^{2}\right)^{1 / 2} . \tag{A2}
\end{equation*}
$$

Since we are only interested in the slow behavior (the algebraic terms discussed in Sec. II), we need only consider

$$
\begin{equation*}
\lambda=-\left(\frac{\beta-\beta \sqrt{1-\frac{4 \gamma}{\beta^{2}}}}{2}+k^{2}\right)^{1 / 2} . \tag{A3}
\end{equation*}
$$

If $\gamma=\gamma_{3} k^{3}+\gamma_{4} k^{4}+\cdots$ and k is small, then we can expand our solution $e^{\lambda x}$ to obtain

$$
\begin{equation*}
\delta u=A\left[1-k x+k^{2}\left(\frac{x^{2}}{2}-\frac{\gamma_{3} x}{2 \beta}\right)+O\left(k^{3}\right)\right], \tag{A4}
\end{equation*}
$$

where A is a function of k. Note how this expansion contains algebraically secular terms that appear to be unbounded as $x \rightarrow+\infty$, but are in fact simply parts of a slowly decaying exponential term. Also we have not included γ_{1} or γ_{2} in our expansion of γ. Including such terms makes equating asymptotic results here to those obtained using perturbative techniques impossible.

APPENDIX B: UNKNOWN INTEGRALS

We have determined the growth rate of small- k perturbations to fourth order in k. The exact values are dependent upon three unknown integrals I_{1}, I_{2}, I_{3}. Here we redefine them from integrals over all x to integrals over all u_{0}.

From the definition given by Eq. (16),

$$
\begin{equation*}
I_{1}=\left\langle\frac{d u_{0}}{d x} \int_{0}^{x} u_{0}\left(x^{\prime}\right) d x^{\prime}\right\rangle \equiv \int_{-\infty}^{+\infty} \frac{d u_{0}}{d x} \int_{0}^{x} u_{0}\left(x^{\prime}\right) d x^{\prime} d x \tag{B1}
\end{equation*}
$$

which on integrating by parts becomes

$$
\begin{align*}
I_{1} & =\left[u_{0} \int_{0}^{x} u_{0}\left(x^{\prime}\right) d x^{\prime}\right]_{-\infty}^{+\infty}-\int_{-\infty}^{+\infty} u_{0}^{2} d x \\
& =u_{2} \int_{0}^{+\infty} u_{0}(x) d x-u_{1} \int_{0}^{-\infty} u_{0}(x) d x-\int_{-\infty}^{+\infty} u_{0}^{2}(x) d x \tag{B2}
\end{align*}
$$

and using Eq. (6) leaves

$$
\begin{align*}
I_{1}= & u_{2} \int_{0}^{u_{2}} \frac{u_{0}}{\sqrt{2 F\left(u_{0}\right)}} d u_{0}-u_{1} \int_{0}^{u_{1}} \frac{u_{0}}{\sqrt{2 F\left(u_{0}\right)}} d u_{0} \\
& -\int_{u_{1}}^{u_{2}} \frac{u_{0}^{2}}{\sqrt{2 F\left(u_{0}\right)}} d u_{0} \tag{B3}
\end{align*}
$$

Similarly,

$$
\begin{align*}
I_{2} & =\left\langle\left(\frac{d u_{0}}{d x}\right)^{2}\right\rangle=\int_{-\infty}^{+\infty}\left(\frac{d u_{0}}{d x}\right)^{2} d x \\
& =\int_{u_{1}}^{u_{2} d u_{0}} \frac{d x}{d x}=\int_{u_{1}}^{u_{2}} \sqrt{2 F\left(u_{0}\right)} d u_{0} \tag{B4}
\end{align*}
$$

and

$$
\begin{align*}
I_{3} & =\frac{K_{1}}{u_{2}}-\frac{K_{2}}{\beta}=\lim _{x \rightarrow+\infty} \int_{0}^{x}\left[\frac{u_{0}}{u_{2}}-\frac{1}{\beta} \frac{d^{2} F}{d u^{2}}\left(u_{0}\right)\right] d x \\
& =\frac{1}{u_{2} \beta} \int_{0}^{u_{2}}\left[\beta u_{0}-u_{2} \frac{d^{2} F}{d u^{2}}\left(u_{0}\right)\right] \frac{d u_{0}}{u_{0 x}} \\
& =\frac{1}{\sqrt{2} u_{2} \beta} \int_{0}^{u_{2}\left[\beta u_{0}-u_{2} F^{\prime \prime}\left(u_{0}\right)\right]} \underset{\sqrt{F\left(u_{0}\right)}}{ } d u_{0} . \tag{B5}
\end{align*}
$$

[1] J.W. Cahn and J.E. Hilliard, J. Chem. Phys. 28, 258 (1958). [2] M.A. Allen and G. Rowlands, J. Plasma Phys. 50, 413 (1993).
[3] A. Shinozaki and Y. Oono, Phys. Rev. E 47, 804 (1993).
[4] P.M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, New York, 1953).
[5] D. Jasnow and R.K.P. Zia, Phys. Rev. A 36, 2243 (1987).

